Building a Toolbar in Internet Explorer
 Janaki Ram & Srilatha
 spoluru@loginsoftindia.com

	

Toolbars provides a means to activate commands and tools contained in an application. To make the application user friendly, a toolbar can be used to expose the key functionality of the application.

 If you choose to know about the toolbars present in Internet Explorer, or how to build one instead, this is the place to visit. This paper provides requisite information about toolbars in general and LoginSoft’s toolbar in particular. This paper first defines the types of bands present in Internet Explorer and what it takes to build them under the section “What you should know?” Then it provides an overview of LoginSoft’s toolbar and its features in “LoginSoft Toolbar Features”. Then we go over the technical details and the problems faced and solutions while building the toolbar in “Understanding the Technology”.

	 [image: image1.png]

 What you should know

 One of the ways of customizing Internet Explorer is by adding a custom Tool Bar. When implemented and registered, it will be added to the Toolbars submenu of the View menu. When selected by the user, the Toolbar will be displayed in the rebar control area of the Internet Explorer.
Toolbars are created with the help of band objects. Band objects are COM objects contained by either Internet Explorer or the shell, and were introduced with version 4.71 of the shell and provide capabilities similar to those of normal windows. With Internet Explorer, there are 4 types of bands.

 Communications Band, which sits at the bottom of an instance of IE4+.

 Information Band sits on the left hand side of an instance of IE4+, like the search bar that allows you to search for files or folders on a hard drive.

 Desk Band sits on the desktop; it can float or dock to any of the 4 sides of the monitor.

 Toolbar/Tool band sits in the rebar space of Internet Explorer, like the address bar, radio bar etc. By creating a tool band object, a new band will be added to the Internet Explorer’s rebar control.

To see the bands, start IE4+. Click the "View" menu item; go down to the "Explorer Bar" menu item. The top half, above the separator are the available Information Bands, the bottom half are the communication bands.

In the case of toolbars/tool bands, click “View” menu item; select “Toolbars” menu item. The bands listed are the toolbars present in IE.[image: image2.png]

	Communication Band

	Information Band

	Tool band

[image: image3.png]

 INCLUDEPICTURE "http://206.204.191.248/WhitePapers/toolbar_files/image006.jpg" * MERGEFORMATINET [image: image4.jpg]tomot E xph
| Fe Edl| Vew Favier o b
Vot
) Esvotes | SiFEljFEscoge] B
ooy e[| Qeach | Blioonsot EPater - 5
Gonge !
“Todis!
tew @ TesSie > E::‘_ b
o— &
@ Finda :"FD R
© rrtap e
dsceen P11
© ot
© Prvios seacher
© Frasmn
Frda\Web pag cortann: o o
] | [
L Yo can o conbin o o e
Shows s an Evplores b

	

	
	Figure 1: Different bands in Internet Explorer

To see a desk band, right click on the taskbar (area connected to the start button). Select the toolbar's menu item from the context menu. Listed are the available desk bands. Initially desk bands are docked on the taskbar. The user can then drag the desk band to the desktop, and it will appear as a normal window:

[image: image5.png]G}

Sample Desk Band

Sample Desk Band

1M138M

Desk Band
	
	
	
	

	
	
	[image: image6.png]Desk Band

	
	
	
	

	
	Figure 2: Desk Band
	
	

 This paper describes the requirements and implementation of toolbar and their capabilities using LoginSoft’s toolbar. The toolbar is written in C++ using Active Template Library (ATL) and Win32 Programming.

Implementing Band Objects
Although they can be used much like normal windows, band objects are COM objects that exist within a container. Though, all the band objects serve different functions, there implementation is similar. The only difference is in how the band object is registered, which in turn controls the type of object, and its container. This section discusses those aspects of implementation that are common to all band objects.

In addition to IUnknown and IClassFactory, all band objects must implement the following interfaces:

 IDeskBand
 IObjectWithSite
 IPersistStream

If the band object is to accept user input, it must also implement IInputObject. To add items to the context menu for Explorer Bar or desk bands, the object must export IContextMenu.

Note: Tool bands do not support context menus.
A band object must be registered as an OLE in-process server that supports apartment threading. This is something ATL does by default. For Explorer Bars, the registered name will appear in the Explorer Bar submenu of the Internet Explorer View menu. For tool bands, it will appear in the Toolbars submenu of the Internet Explorer View menu. For desk bands, it will appear in the Toolbars submenu of the taskbar's context menu.

In addition to registering their CLSID, the Explorer Bar and desk band objects must also be registered for the appropriate component category. Registering the component category determines the object type, and its container. Tool bands use a different registration procedure and do not have a CATID. The CATIDs for the three band objects that require them are:

	Band Type
	Component Category

	Vertical Explorer Bar
	CATID_InfoBand

	Horizontal Explorer Bar
	CATID_CommBand

	Desk Band
	CATID_DeskBand

 Tool bands must have their object’s CLSID registered with Internet Explorer under HKEY_LOCAL_MACHINE\Software\Microsoft\Internet Explorer\Toolbar named with the string form of the tool band object’s CLSID GUID.

	[image: image7.png]

 LoginSoft Toolbar Features

 Login Soft toolbar is a tool band object that resides in the rebar control of the Internet Explorer. The rebar control is a container for child windows. The application assigns the child windows to the rebar control band.

The toolbar provides series of links as shortcuts for quick access. The following is a picture of LoginSoft toolbar.

	Figure 3: Login Soft Toolbar

[image: image8.jpg]CoEEE|-[Jelwe z]Qeesch | Blloorson BPatne: - H Hone Advriage

® b
Boa
Booon

It is divided into two sections: Standard section and Customizable Section. The standard section consists of LoginSoft logo, a dropdown button with LoginSoft bitmap icon, an edit box to enter search phrases, a dropdown combo box to choose the search site and a Search button to launch searching. The LoginSoft dropdown button has three items in its popup menu viz. Preferences, Refresh and About Toolbar.

The Customizable Section has only toolbar buttons both normal as well as dropdown, which can be added or removed as per the users’ settings. These buttons are again classified into default buttons and non-default buttons. They are four buttons namely LoginSoft, Sign In, Sign Out, Mail under default category. The non-default buttons, which the users can add or remove, are Partners, News, Home Advantage, and Dialer.

The following is a brief over view of each of the buttons and other controls present in the toolbar.

LoginSoft Logo Button: This is a static button with a LoginSoft bitmap image drawn over the static button. This button is placed in the toolbar over a toolbar separator. A toolbar separator is a type of toolbar button with only a line at the center of the button and mainly used to group the buttons.

[image: image9.jpg]login’s sof

LoginSoft Dropdown Button: This is a dropdown button placed in the standard section of the toolbar. It has three items in the menu. They are Preferences, Refresh, and About Toolbar.

[image: image10.jpg]Preferences
Refresh Taoksar
About Toobar

Preferences: This link when clicked takes the user to a preferences page. Here the user is provided with a choice to select buttons to add or remove from the toolbar. Also, user can configure mail server to receive alerts on the mail button upon receipt of new mails. Once the preferences are saved, the toolbar is rendered with the new settings.

Refresh: This link is provided to refresh the toolbar i.e. re-render the toolbar with new settings. This also fetches mail alert from the mail server.

About Toolbar: This link displays a general information page about the toolbar.

Search Group: Search group consists of three controls: Edit Box, Combo Box and Search Button. Edit box is for entering the search phrases/words, Combo box to choose the search site. On clicking the Search button, the application takes the user to the search results page for the phrase/word entered in edit box, from the site selected in the combo box. If no selection is made in the combo box, the search is carried out in default site i.e. Yahoo.

[image: image11.jpg]

 [image: image12.jpg]

 [image: image13.jpg]Qsearch

The above said buttons and controls are part of the Standard Section of the toolbar. The following are the buttons, which fall into customizable section.

LoginSoft & Home Advantage Buttons: Here, LoginSoft is a default button where as Home Advantage is grouped in customizable section. On Click, these buttons take the user to the respective web sites on the net.

[image: image14.jpg]BlLogisatt

 [image: image15.jpg]I Home Advantage

Sign In & Sign Out Buttons: These are default buttons, which takes the user to respective pages. On sign in, the application fetches the saved preferences from the database in XML format and renders the toolbar. On Sign out, the toolbar ends the session. Check “ASP & XML Application” sub section for details.

[image: image16.jpg]SignIn

 [image: image17.jpg]@ signout

Mail Dropdown Button: This is a default button. This button checks for the mail from the user configured mail server. This button has two sections: arrow section and bitmap/text section. The bitmap/text section acts like a standard button, which on clicking checks for the new mail. Where as, the arrow acts like a dropdown and displays a popup menu below the button. Here, the menu has only one item i.e. “Check Mail” which navigates the user to the mail log in page.

[image: image18.png]Mai

Check Mai

Partner & News Dropdown Buttons: These are customizable buttons. These buttons act as dropdown and display the popup menus below the buttons. The menu items act as links to respective web sites.

[image: image19.jpg]BPaitess -

Interactive Iteligence.
Microsaft

 [image: image20.jpg]@News ~
CHN News
MSNEC
ESPN
Walstieet Jourmal
ZDNet

Dialer Button: This is also a customizable button. This button launches a Dialer application in a new process, if the application is installed on the client machine.

[image: image21.jpg]@ Disler

ASP & XML Application
 User Sign in and Sign out: This feature is provided to the user to sign in and set up preferences to render the toolbar. The preferences store is an ASP application. The user has to first register with this application to set up the preferences for buttons and links as well as mail server configuration. The preferences are stored in a database. At the time of rendering the toolbar, the toolbar connects to the ASP application at the web server to fetch the users’ preferences. The ASP application returns the preferences in an XML file in the following format.

 [image: image22.png]

<?xml version='1.0'?>
 <Response>
 <Preferences count="2">
 <Element Type="Button" ImageNormal="IDB_LOGO"
ImageHot="IDB_LOGO" Text="LoginSoft"
Id="IDS_LOGINSOFT" Render="url"
Address="www.loginsoft.com" Default="TRUE">
 </Element>
 <Element Type="Dropdown" ImageNormal="IDB_LOGO"
ImageHot="IDB_LOGO" Text="Partners"
Id="IDS_PARTNERS" MenuID="IDR_PARTNERS"
MenuItemcount="2" Default="TRUE">
<DDMenuItem MenuItemId="ID_INTER"
MenuItemAddress="www.inin.com"/>
<DDMenuItem MenuItemId="ID_MICROSOFT"
MenuItemAddress="www.microsoft.com"/>
 </Element>
 </Preferences>
 </Response>

The XML file is parsed by the toolbar to identify the buttons and the same is rendered on the toolbar.

 The toolbar at any point displays only one of the buttons i.e. Sign In or Sign Out. Sign In button appears when there is no session open with the user. Hence no cookie is deployed. The toolbar is constructed with only default elements and the standard section. As long as the session is open, Sign Out button is rendered on the toolbar.

 On clicking Sign In, a session is maintained with the server, which deploys a cookie at the clients/user’s end. As long as the cookie exists on the client, the session is maintained. On Sign out, the session gets closed and the cookie is destroyed.

 Http Connection

 I know you must be wondering how does the toolbar connect to an ASP application running on a web server far away. The answer is to open an Http connection with the server. In this case, we are opening an Internet session with the server with the help of CInternetSession class of “afxinet” library. Through CInterentSession object we obtain CHttpConnection Object

CHttpConnection object manages your connection to an HTTP server. After obtaining the Connection object, OpenRequest method is invoked to get CHttpFile object.

The class CHttpFile provides the functionality to request and read files on an HTTP server. Through this object the toolbar sends the cookie name to the server for validation and retrieves XML file from the HTTP server.

In case of failure in obtaining the Connection with the HTTP server, then the toolbar is rendered using a Config file present at the client’s end.

	[image: image23.png]

 Understanding the Technology

 The basic procedure adopted for creating Login Soft Toolbar is:

 1. Implement the functions needed by the DLL.

2. Implement the required COM interfaces.

3. Implement any desired optional COM interfaces.

4. Register the object's CLSID.

5. Create a child window, sized to fit the band’s display region.

6. Use the child window to display toolbar and interact with the user.

 Apart from the above-mentioned points, this section also covers few details regarding different approaches followed and problems faced during the construction of the toolbar.

 Implementing DLL Functions

 The DLL exposes the following functions. The toolbar implements these functions and makes appropriate method calls.

 DllGetClassObject: This is an entry point for all DLL COM servers. This function on invocation returns a class factory to create an object of the tool band type.

DllCanUnloadNow: This determines whether the DLL that implements this function is in use. If not in use, then the caller can safely unload the DLL from the memory.

 DllRegisterServer: This function is used while registering the DLL. The Regsvr32 command calls the Windows LoadLibrary () API on the toolbar DLL name; followed by a call to DllRegisterServer (). If this function fails, the program reports an error.

 DllUnregisterServer: This function is invoked when unregistering the toolbar DLL.

Implementation of required COM interfaces
The toolbar band object implements the following interfaces in addition to IUnknown and IClassFactory.

IObjectWithSite: The IObjectWithSite interface is implemented to support direct communication between the band object and its site in the container i.e. Internet Explorer’s rebar control.

IObjectWithSite has two methods namely SetSite () and GetSite (). The container calls the SetSite method on this interface to provide the toolbar object with an interface pointer to its site.

When the user selects the band object, the container calls the IObjectWithSite::SetSite method. The IUnknown pointer is passed to the method as input parameter.

In the SetSite method, we generally obtain the handle to the parent window i.e. Internet Explorer’s rebar control. Then we register and create an invisible window as a child of the rebar control.

The GetSite method’s implementation simply wraps a call to the QueryInterface method using the site pointer saved by the SetSite.

IPersistStream: Internet Explorer will call the toolbar's IPersistStream interface to allow the toolbar to load or save persistent data. If there is no persistent data, the methods must still return a success code. The IPersistStream interface inherits from IPersist, so five methods must be implemented: GetClassID, IsDirty, Load, Save, GetSizeMax.

The toolbar does not persist any data. So the above methods return a success code except for the GetClassID method, which returns the toolbar object’s CLSID.

IDeskBand: The IDeskBand interface is specific to band objects. In addition to its one method, it inherits from IDockingWindow, which in turn inherits from IOleWindow.

There are two IOleWindow methods: GetWindow and ContextSensitiveHelp. The toolbar object's implementation of GetWindow returns the toolbar's child window handle. Context-sensitive help is not implemented, so ContextSensitiveHelp returns E_NOTIMPL.

The IDockingWindow interface has three methods: ShowDW, CloseDW, and ResizeBorder. The ResizeBorder method is not used with any type of band object and should always return E_NOTIMPL. The ShowDW method either shows or hides the toolbar's window, depending on the value of its parameter. The CloseDW method destroys the toolbar's window.

The method that is specific to IDeskBand is GetBandInfo (). Internet Explorer uses it to specify toolbar’s identifier and viewing mode. Internet Explorer also may request one or more pieces of information from the toolbar by filling the dwMask member of the DESKBANDINFO structure that is passed as the third parameter. GetBandInfo should store the identifier and viewing mode, and fill the DESKBANDINFO structure with the requested data.

 Implementation of Optional COM interfaces
 Apart from the above requisite interfaces, toolbar also implements the following optional interface.

IInputObject: The IInputObject interface must be implemented if a band object accepts user input. Internet Explorer implements IInputObjectSite and uses IInputObject to maintain proper user input focus when it has more than one contained window. There are three methods that need to be implemented. They are UIActivateIO, HasFocusIO, and TranslateAcceleratorIO.

Internet Explorer calls UIActivateIO to inform the toolbar that it is being activated or deactivated. When activated, the toolbar sample calls SetFocus to set the focus to its window.

Internet Explorer calls HasFocusIO when it is attempting to determine which window has focus. If the toolbar's window or one of its descendants has focus, HasFocusIO should return S_OK. If not, it should return S_FALSE.

TranslateAcceleratorIO allows the object to process keyboard accelerators. The toolbar sample processes the VK_BACK, VK_END, VK_DOWN, and VK_DELETE messages before dispatching the message to its parent window.

Registration of CLSID
 The registration of LoginSoft toolbar’s CLSID, which is a 128bit GUID (Globally Unique ID), is done in the following root keys. The registry entries for LoginSoft toolbar look something like this.
[image: image24.png]

HKEY_CLASSES_ROOT
 CLSID
 {18CEE64E-24C0-11D5-9525-0050BA8B648D} = "&LoginSoft"
 InprocServer32 = <path>\Mfctolband.dll
 ThreadingModel = “Apartment”
 ProgID = “Toolband.band.1”
 TypeLib = “{18CEE64E-24C0-11D5-9525-0050BA8B648D}”
 VersionIndependentProgID = “Toolband.band”
The toolbar is also registered in HKEY_LOCAL_MACHINE with the following path.
[image: image25.png]

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\Toolbar
The registration process is a must for COM objects. The Registration entries for the toolbar object are written in an “. RGS” file. The ATL registrar loads .RGS files that not only add but can also delete registry entries. So, the same file is used to both register and un-register the toolbar object.
 Window Creation

 The window creation is handled in SetSite method of IObjectWithSite interface. An invisible window is created between the toolbar and Internet Explorer’s rebar to get the window messages sent from the toolbar to its parent. When a method call is made to RegisterAndCreateWindow function IObjectWithSite::SetSite method, two messages are sent to the window viz. WM_NCCREATE and WM_CREATE.

 WM_NCCREATE is called prior to WM_CREATE message when a window is first created. Then, in the WM_CREATE message, the toolbar is constructed and added to the reflection window.

Toolbar Construction

 This section completely deals with the construction of toolbar by walking you through the making of Login soft toolbar.

 Many hurdles had to be crossed to reach the goal. Being very new to Win32 programming, I had no idea how to add a button to a band we had just created. A lot of experiments were carried out to achieve the desired result. Being only one program old in experience with WINAPI programming, the first approach was to add the windows user interface controls like button, combo box etc. directly onto the reflection window. But the interface was very bad with the edges being very ugly. The first hurdle was to build a bar, which is similar to already existing toolbars in IE. Several days and a few mind blocks later, toolbar under Windows Common Controls was discovered.

First of all let me explain what a common control is. A common control is a child window, implemented by the common control library (comctl32.dll) that can be used by any Windows-based application to perform a common I/O routine. Toolbar is one of the common controls which supports features like transparent flat look, Hot tracking of buttons, dropdown buttons, setting different images to normal, hot and disabled buttons etc. The basic functionality of Windows toolbar control is to hold one or more buttons. Each button when clicked by a user sends WM_COMMAND message to the parent. The toolbar supports a set of global common control styles.

 [image: image26.jpg]Bltoginsott BPatners - H Home Advartage @News - & Disler

	

	
	Figure 4: Flat and List style Toolbar

Another feature, which is extensively used in building this toolbar, is dropdown button feature. An attached down arrow usually indicates this type of button. This button is designed to present users with a list of options. When the user clicks the arrow; a popup menu is displayed below the button. To display the arrow on the button, TBSTYLE_EX_DRAWDDARROWS style is set to the toolbar.

[image: image27.jpg]@News ~
CHN News
MSNEC
ESPN
Walstieet Jourmal
ZDNet

 [image: image28.png]Mai

Check Mai

	

	
	Figure 5: Drop down Buttons

Another feature supported by the toolbar control is hot tracking of buttons. Hot tracking means, when the mouse hovers over the buttons, the button becomes hot i.e. the button under the mouse is highlighted by drawing a box around the button as shown in the figure below. A toolbar created with the TBSTYLE_FLAT style supports hot-tracking by default.

 [image: image29.jpg]H Home Advanisge @News - G Disler | [85ion 0ut

	

	
	Figure 6: Hot Tracking of Toolbar Button

Second hurdle to cross was to provide customization facility to the user. Meaning, the user can register with the toolbar to choose the buttons that can be placed on the toolbar. This was achieved with the help of ASP, XML technologies. To render the toolbar as per the users’ preferences, the user needs to be authenticated and then the preferences of that user are fetched from the permanent storage. This was achieved by storing the user details as well as the preferences against that user in a database.

Customization also includes configuring the mail server to show mail alerts in the form of image on the Mail button. The user enters the mal server name, user id, password etc in the preferences page, which gets stored in the database. The ASP application uses a class built with Java Mail API, which connects to the specified server logs in with the help of user id and password. The java class returns the number of new/unread mails present in the user’s inbox. This data is stored in one of the mail attributes in XML file. The toolbar application, based on this attribute, displays the appropriate image on “Mail” button on the toolbar.

The third hurdle came in the form of chevron on the toolbar. A chevron is a button with “>>” sign on it and appears whenever a portion of the toolbar is hidden as a result of reducing the size of the Internet Explorer window. This chevron can be obtained by setting the style of the band holding the toolbar to RBBS_USECHEVRON in the REBARBANDINFO structure. Later, this new modified structure is set to the band holding the toolbar.

	Figure 7: Chevron on a Toolbar

	[image: image30.png]

 INCLUDEPICTURE "http://206.204.191.248/WhitePapers/toolbar_files/image047.gif" * MERGEFORMATINET [image: image31.png]

Chevron

[image: image32.jpg]

Here, the solution was available, but the problem faced was, where to set the structure of the method. The best way to do this is to set the structure at the time of toolbar creation i.e. during WM_CREATE window message. But, this threw access violation, as the band was not yet identified with the Internet Explorer. So an alternative had to be searched to set the style. Next approach was to set the style when the window sends WM_NOTIFY message to the window procedure. This resulted in more than one band being constructed. Finally, the style was set in IdockingWindow::ShowDW method to obtain a chevron with a dropdown menu of hidden toolbar buttons.

Window Procedure

Because a band object uses a child window for its display, it must implement a window procedure to handle Windows messaging. So the toolbar’s window procedure handles the following messages: WM_NCCREATE, WM_CREATE, WM_PAINT, WM_COMMAND, WM_NOTIFY, WM_SETFOCUS, and WM_KILLFOCUS.

WM_NCCREATE: This message is sent prior to WM_CREATE message when a window is first created. A window receives this message through window procedure.

WM_CREATE: This message is sent when an application requests that a window be created by calling CreateWindow or CreateWindowEx function. This message is sent before the function returns. Here, the toolbar is created and returns a handle to the reflection window.

WM_PAINT: Handles painting of the window.

WM_COMMAND: This message is sent when the user selects a command item from a menu, a button click or when an accelerator keystroke is translated. Here, the toolbar mainly processes button clicks and menu item selection form the dropdown buttons. The action performed on clicking a button or selecting menu could be navigating to a web site or launching an application or re-rendering toolbar etc.

WM_NOTIFY: This message is sent by a common control to its parent window when an event has occurred or the control requires some information. The toolbar mainly processes one message under WM_NOTIFY. They are TBN_DROPDOWN message, which is sent by the dropdown button on the toolbar. When this message is sent by the toolbar, the application obtains the position of the button and loads a popup menu and displays under that button.

WM_SETFOCUS & WM_KILLFOCUS: This message is sent to a window after it has gained or about to lose the keyboard focus. Here, these inform the site of a focus change by calling the sites IInputObjectSite::OnFocusChangeIS method.

Browsing Capability
 The WebBrowser control adds browsing, document viewing, and data downloading capabilities to the application. Applications using this control will allow the user to browse sites on the Internet's World Wide Web, as well as folders in the local file system and on a network.

Here WebBrowser control is used to add the Internet browsing functionality to the toolbar. This control is made available in the form of IWebBrowser2 interface. The first task was to obtain a pointer to the IWebBrowser2 interface, which provides the capability to navigate to the required sites on button click or menu selections etc.

This is achieved with the help of IServiceProvider interface. This interface has one method by name QueryService that returns the IWebBrowser2 pointer, which is made use of to navigate to the required URL.

Working around the Keyboard
The keyboard is used primarily for entering and editing textual information. However, the Windows interface also supports the use of the keyboard to navigate, toggle modes, modify input, and, as a shortcut, invoke certain operations.

 In Internet Explorer, the backspace is mapped to “Back button in the Standard Toolbar” which takes the user to previous page in history. Due to this, the toolbar’s edit box was not responding to backspace key in the keyboard. So to work around the problem i.e. to make the edit box respond to backspace key (VK_BACK) as long as the focus is in the edit box, this keyboard message was handled in the IInputObject::TranslateAcceleratorIO method before dispatching the message to the parent.

Miscellaneous Errors

Sudden disappearance of IE application: This was happening due to the size of the array, which holds the URL. As the size of the array was not sufficient to hold the complete URL of the site, the application overwrote memory which resulted in the IE window disappearing or it throw an access violation when running inside the debugger. This was sorted out by increasing the size of the array.

Obtaining Web browser pointer: The earlier approach taken to obtain the pointer to IWebBrowser2 interface was by registering the toolbar as a Browser Helper Object also.

In its simplest form, a BHO is a COM in-process server registered under a certain registry's key. Upon startup, Internet Explorer looks up that key and loads all the objects that’s CLSID is stored there. The browser initializes the object and asks it for a certain interface. Here, the BHO should implement IObjectWithSite interface. If that interface is found, Internet Explorer uses the methods provided to pass its IUnknown pointer down to the helper object

Through the IObjectWithSite interface’s SetSite method, the IWebBrowser2 pointer is obtained and stored in Queue. This pointer is used to navigate through the toolbar to the required websites.

 This was dropped, as the whole process was tedious involving registering the object as Browser Helper Object and storing the pointer in a Queue.

	[image: image33.png]

 Summary

Band objects provide a flexible and powerful way to extend the capabilities of Internet Explorer. LoginSoft’s toolbar is a toolbar, which resides in the rebar control of the Internet Explorer and provides services like quick access to sites, mail settings, customizing toolbar buttons etc. It has links to LoginSoft home page along with its partner sites, few news sites and search option. The user can register and set the preferences. These preferences are used to render the toolbar elements. This toolbar is built using COM and windows programming.

	[image: image34.png]

 References

http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/Bands.asp
http://msdn.microsoft.com/library/en-us/dnmind99/html/cutting1199.asp
http://msdn.microsoft.com/library/en-us/dnctrl/html/msdn_rebar.asp
http://msdn.microsoft.com/library/en-us/vccore98/HTML/_core_rebar_controls_and_bands.asp
http://www.codeguru.com/ieprogram/bands.shtml
http://www.codeguru.com/ieprogram/CGBand.html
